Feasibility study for measuring Drell-Yan cross section and double-spin asymmetry at PHENIX using the FVTX Tracker

Darshana Perera

New Mexico State University

Advisor – Dr. Stephen Pate

APS April Meeting

Run 12 Luminosity

Wide vertex: 49.56 pb⁻¹
 30 cm vertex: 30.03 pb⁻¹
 15 cm vertex: 14.81 pb⁻¹

Run 12 Average Proton Polarization

- 52%

Run 13 Luminosity to date

Wide vertex : 52.74 pb⁻¹
 30 cm vertex : 33.67 pb⁻¹
 15 cm vertex : 16.92 pb⁻¹

- Drift and Pad chambers for charged particle tracking.
- Ring Imaging Cerenkov and electromagnetic calorimeter for electron ID
- VTX for central tracking

Muons and Hadrons in the forward regions

- Mu ID
- Mu Trackers
- RPC
- FVTX

FVTX for forward tracking

- 4 planes per end-cap
- Coverage
 - $1.2 < |\eta| < 2.4$
 - 2π in φ
 - |z| < 15 cm
- Resolution
 - Hit $< 25 \mu m$
 - DCAR < 200 μm

$$\begin{split} A_{LL}^{DY} &= -\frac{\sum_q e_q^2 \{\Delta q(x_1) \Delta \bar{q}(x_2) + \Delta \bar{q}(x_1) \Delta q(x_2)\}}{\sum_q e_q^2 \{q(x_1) \bar{q}(x_2) + \bar{q}(x_1) q(x_2)\}} \\ &\approx -\frac{\Delta u(x_1)}{u(x_1)} \cdot \frac{\Delta \bar{u}(x_2)}{\bar{u}(x_2)} \quad \text{u-quark} \\ &\text{dominates in p+p} \end{split}$$

- Drell-Yan A_{LL} can cleanly access Δ \bar{u} / \bar{u} which gives the anti-quark helicity distributions in the nucleon sea
- No fragmentation process is involved when comparing with previous DIS measurements

- PHENIX experiment provides powerful detection for di-muon in the forward region (1.2< $|\eta|$ <2.4) through Muon Trackers
- For di-muons detected in same arm $x_1 = 0.02 0.06$, $x_2 = 5 \times 10^{-4} 2 \times 10^{-3}$
- New vertex detector (FVTX) of matching η acceptance with Muon Trackers provides new capability in differentiating signal to background
- Run 12 and Run 13 data will provide sufficient statistics for Drell-Yan analysis
- If anti-quarks carry no spin we expect
 Drell Yan A_{LL} to be zero

- The Drell-Yan process between 4 GeV < M < 8 GeV of invariant mass is called Intermediate-mass Drell-Yan process
- The PHENIX FVTX can help to reduce the dominant background from beauty decays
- Prompt muons from DY
- Displaced tracks from heavy quark decays

Simulation for p-p \sqrt{s} = 200 GeV(from the study for muon arm)

p-p \sqrt{s} = 510 GeV Run12 data

- Differentiate primary vertex from secondary decay using DCA
 - DCA cuts improve DY signal-to-background
- Comparison of the overall tracklet activity
- Isolation Cut
 - Cone Cut

Extracting DY signal with FVTX-DCA cuts

	Signal	Background
1 σ cut	60%	13%
2 σ cut	89%	37%
3 σ cut	96%	55%

 DCAR cuts improve DY signal-tobackground ratio. (dominated by beauty in intermediate mass region)

Provides approximately a 10:1 rejection at 50% signal efficiency

Plotted by Jin Huang and Cesar Luiz da Silva

tracklets where

efficiency

Extracting DY signal with FVTX Isolation Cut

- Three ways implemented in the cone isolation study
 - Tracklet-based best quality, but lowest stat
 - Cluster-based
 highest stat., but vulnerable to background
 - Cluster-pair based a balance of both
- $dR = sqrt(d\eta^2 + d\phi^2)$
 - Bin separated in logarithmic scale 0.01 1 rad

Plotted by Jin Huang and Cesar Luiz da Silva

Summary

- The main background for Drell-Yan signal is correlated BB and CC
- PHENIX muon arms have been recently upgraded and FVTX will significantly reduce backgrounds while having high efficiency on the signals
- The following methods show promising signs for isolating the Drell-Yan Signal
 - DCA Cut
 - Tracklet count
 - Isolation Cut
 - Cone Cut
- Statistical methods such as like sign subtraction will be used to remove other backgrounds like combinatorial background

Thank you ...!!!

Back up

DCA_R Definition

DCA_R(Distance of Closest Approach) = impact parameter

= impact parameter projected onto μp_T

$$DCA_{R} = x0reco*(\frac{px0reco}{\sqrt{px0reco^{2} + py0reco^{2}}})$$

$$+ y0reco*(\frac{py0reco}{\sqrt{px0reco^{2} + py0reco^{2}}});$$

PHENIX Integr. Sampled Lumi vs Day

Thu Apr 26 22:09:41 2012

New definition for dimuon DCA_R

Back up

Polarized Quark Distributions

Unpolarized Quark Distributions

